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Overview

Bayesian calibration
» more than parameter estimation
» uncertainty quantification (UQ) 1s central 1ssue

» cach new experiment used to improve knowledge of models

Physics simulations codes

» need to be understood on basis of experimental data

Analysis process
» employ hierarchy of experiments, from basic to fully integrated

» goal 1s to learn as much possible from all experiments
Example of analysis process: material model evolution

Framework for Bayesian updating of sequence of expts.
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Bayesian uncertainty analysis

Uncertainties in parameters are
characterized by probability
density functions (pdf)

Probability interpreted as
quantitative measure of
“degree of belief”

Rules of classical probability Parameter value
theory apply

Bayes law provides way to

update knowledge about

models as summarized 1n terms

of uncertainty
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Bayesian calibration

Estimation of model parameters and their
uncertainties

« Bayesian foundation

» focus 1s as much on uncertainties in parameters as on their
best value

» use of prior knowledge, €.g., previous experiments

» model checking;
does model agree with experimental evidence?

August 7, 2002 LANL Radiographic S&A Workshop 4



Schematic view of simulation code

Tnitial State Simulation W(t)
Y(0) engine
Model A
a

« Simulation code predicts state of time-evolving system
Y(t) = time-dependent state of system

* Requires as input
»  W(0) = initial state of system

» description of physics behavior of each system component;
e.g., physics model A with parameter vector a (e.g., constitutive relations)

« Simulation engine solves the dynamical equations (PDEs)
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Simulation code predicts measurements

()

Initial State Simulation
W(0)
Model A
a

Measurement
System Model

Y*(a)
Predicted
Measurements

« Simulation code predicts state of time-evolving system
Y(t) = time-dependent state of system

* Model of measurement system yields predicted measurements
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Forward and inverse probability

space Forward probability space
Original Prediction
uncertainty uncertainty
Inferred
uncertainty Measurement

Inverse probability uncertainty

e Model inference

» if uncertainties in measurements are smaller than prediction
uncertainties that arise from parameter uncertainties, one may be able
to use measurements to reduce uncertainties in parameters

» requires that prediction uncertainties are dominated by uncertainties in
parameters and not by those in experimental set up

» good experimental technique important for Bayesian calibration
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Bayesian calibration for stmulation codes

* Goal 1s to develop an uncertainty model for the
simulation code by comparison to experimental
measurements

» determine and quantify sources of uncertainty
» uncover potential inconsistencies of submodels with expts.

» possibly introduce additional submodels, as required

* Recursive process

» aim 1s to develop submodels that are consistent with all
experiments (within uncertainties)

» a hierarchy of experiments helps substantiate submodels over
wide range of physical conditions

» cach experiment potentially advances our understanding
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Motivating example

* Problem statement
» design containment vessel using high-strength steel, HSLA 100

» predict depth of vessel-wall penetration for specified shrapnel
fragments at specified impact velocity

» estimate uncertainty in this prediction to estimate safety factor

* Approach

» determine what experiments are needed to characterize
stress-strain relationship for plastic flow of metal

» follow the uncertainty through the analysis of expt. data

» variables to consider: temperature, strain rate, variability in
material composition, processing, behavior
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Hierarchy of experiments - plasticity

Basic characterization experiments - measure
stress-strain relationship at
specific stain and strain rate

T fixed

» quasi-static — low strain rates

» Hopkinson bar — medium strain rates

Partially integrated expts. - Taylor test

log(strain rate)

» covers range of strain rates Hopkinson

» extends range of physical conditions ® ©® < (uasi-static

Full integrated expts. Strain
» mimic application as much as possible
» projectile impacting plate
» may involve extrapolation of operating range; so
introduces addition uncertainty
» Integrated expts. can help reduce model uncertainties
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Analysis of hierarchy of experiments

Basic - Fully integrated

experiments application

Quagi- — Application
Static

« Series of experiments to determine plastic behavior of a metal

* Information flow shown for analysis sequence

« Bayesian calibration —

» analysis of each experiment updates model parameters and their
uncertainties, consistent with previous experiments

» information about models accumulates throughout process
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Stress-strain relation for plastic deformation

Analysis of quasi-static and Hopkinson bar measurementst
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Monte Carlo sampling

« Use Monte Carlo to draw random samples from

uncertainty distribution for Zerilli-Armstrong parameters
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Taylor impact test

Propel cylinder into rigid plate

Measure profile of deformed
cylinder

Deformation depends on
» cylinder dimensions
» impact velocity

» plastic flow behavior of material at
high strain rate

Useful for

» determining parameters in material-
flow model

» validating simulation code
(including material model)
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Taylor test stmulations

« Simulate Taylor impact test
» Abaqus, commercial FEM code

» Johnson-Cook model for rate-dependent
strength and plasticity

» 1gnore anisotropy, fracture effects

» cylinder: high-strength steel
15-mm dia, 38-mm long

» impact velocity = 350 m/s
o Effective total strain reaches 250%

17 Us 33us S50 s
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Plausible simulation predictions (forward)

plausible set of

Simulation
engine

Initial State

1W(0);}

(W1} predicted dynamic
states of system

plausible set of
initial states of Model A plausible set of
system {a} parameter vectors O

* Generate plausible predictions for known uncertainties in

parameters and 1nitial conditions
* Monte Carlo method

» run simulation code for each random draw from pdf for a, p(a|.), and

initial state, p(W¥(0) |.)

» simulation outputs represent plausible set of predictions, {¥(t)}
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Monte Carlo example - Taylor test

« Use MC technique to
propagate uncertainties
through deterministic = = =
simulation code |

NESSUS/Abaqus

Deformed Profiles at 120 p-second, Nominal Run

» Draw value for each of four
parameters from its assumed
Gaussian pdf

f=1
oo
T

[=1
(=2}
T

» Run Abaqus code for each set of
parameters

Axial, 2-Direction (inch)
o)
-
T

* Figure shows range of
variation in predicted cylinder
shape ;

f=1
[ )
T
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High-strength steel HSLA 100

246 m/s impact velocity
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Taylor test experiment

« Taylor impact test specimen
» high-strength steel HSLA 100
» impact velocity = 245.7 m/s

» dimensions, final/initial
length  31.84 mm /38 mm
diameter 12.00 mm / 7.59 mm
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Comparison with experiment

e Don’t have measurements

of the deformed cylinder
yet, but suppose we do

* (Quantitative comparison
of simulation prediction
with experimental data
must take 1to account
uncertainties in both
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Parameter estimation - maximum likelihood

Measurements, Y

” W(t) L. -In p(Y]Y™)
Initial State . . Measurement S s
Simulation =1/, X
W(0) System Model Y*(a)

Modm

a

Optimizer

Optimizer adjusts parameters (vector ) to minimize -In p(Y [Y*(Q))

Result 1s maximum likelithood estimate for a (also known as minimum-
chi-squared solution)

Optimization process is accelerated by using gradient-based algorithms
along with adjoint differentiation to calculate gradients of forward model
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Parameter uncertainties via MCMC

Measurements, Y

L.

W(t -In p(Y|Y*
Initial State . . ® Measurement f (1 |2 )
Simulation =15 X
{W(0)} System Model Y*(a)

& vowe [P

* Markov Chain Monte Carlo (MCMC) algorithm generates a random
sequence of parameters that sample posterior probability of
parameters for given data Y, p(a | Y), which yields plausible set of
parameters {q}.

e Must include uncertainty in initial state of system, {¥(0)}
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Bayesian calibration strategy

« Hierarchy of experiments

» basic - designed to isolate and characterize a basic physical phenomenon at
single

» partially integrated - involves more complex combination of phenomena,
¢.g., multiple materials, varying conditions, complex geometry, ...
» fully integrated - attempt to approach application conditions

 Inference - use validation experiments to update info about model
» capture info in terms of uncertainties
» uncertainties indicate degree of confidence in prediction
» attempt to develop model that is consistent with ALL available experiments
« Ultimate goal - Combine results from many (all) experiments
» reduce uncertainties in model parameters

» require consistency of models with all experiments
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